$\overline{}$
_
Q
-
\Box
α
Ν
0
Q
: ب
J
α
7
₹
₹
≷
\geq
~
_
-
Ξ
-
_

Title Electronics and Power Electronics	Code 1010321231010320142
Field Electrical Engineering	Year / Semester 2 / 3
Specialty	Course
- Hours	Number of credits
Lectures: 2 Classes: - Laboratory: - Projects / seminars: -	5
	Language
	polish

Lecturer:

PhD DSc Ryszard Porada PhD Michał Gwóźdź

Institute of Electrical Engineering and Electronics

60-965 Poznań, ul. Piotrowo 3a

tel. +48 061 665 26 30

e-mail: Ryszard.Porada@put.poznan.pl

Michal.Gwozdz@put.poznan.pl

Faculty:

Faculty of Electrical Engineering

ul. Piotrowo 3A 60-965 Poznań

tel. (061) 665-2539, fax. (061) 665-2548 e-mail: office_deef@put.poznan.pl

Status of the course in the study program:

Obligatory course, Faculty of Electrical Engineering, field Electrical Engineering.

Assumptions and objectives of the course:

Absorbing of knowledge for analysis and synthesis of electronic circuits.

Contents of the course (course description):

Features of basic electronic components as: diodes, transistors and passive elements. Optoelectronic devices ? features and application areas. Introduction to linear circuits with feedback loop; stability problem. Operational amplifiers and applications of these in analog electronics. Power amplifiers. Electronic generators basics. Analog filters ? designing and application areas. Digital electronics basics: binary systems, Boolean operations, gates and functional blocs. TTL family. Features and applications of semiconductor memories: SRAM, DRAM, EEPROM, FLASH.

Introductory courses and the required pre-knowledge:

Basic knowledge about physics, electrical engineering and mathematical analysis.

Courses form and teaching methods:

Lectures.

Form and terms of complete the course - requirements and assessment methods:

Written examination.

Basic Bibliography:

Additional Bibliography:

ilonai bibilograpi